Skip to main content
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation

PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation

Basic Information

  • Mu Chen, Zhedong Zheng, Yi Yang, Tat-Seng Chua
  • 2022 ACM Multimedia

問題描述

這一篇與過去看過的 DACS, ProDA, DAFormer, HRDA 同樣都是以 Unsupervised 的方式解決 Semantic Segmentationb 的 Domain Adaptation問題。


...About 7 minNotePaper ReadDomain AdaptationComputer VisionACM Multimedia
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

Basic Information

  • Lukas Hoyer, Dengxin Dai, Luc Van Gool @ ETH Zurich & MPI for Informatics
  • 2022 ECCV

問題描述

這篇 paper 如同 DAFormer 關注在 UDA for semantic segmentation 。


...About 14 minNotePaper ReadDomain AdaptationComputer VisionECCV
DACS: Domain Adaptation via Cross-domain Mixed Sampling

DACS: Domain Adaptation via Cross-domain Mixed Sampling

Basic Information

  • 2020 Release
  • 2021 WACV(Winter Conference on Applications of Computer Vision)
  • Chalmers University of Technology(查爾摩斯理工大學)與 Volvo Cars 共同發表

What is Domain Adaption


...About 10 minNotePaper ReadDomain AdaptationComputer VisionWACV