Skip to main content
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Basic Information

  • Sergey Ioffe, Christian Szegedy from Google Reserch, @google.com
  • 2015 ICML

Problem Description

在訓練Deep Neural Network的過程中,每層layer的input distribution都會隨著前一層的parameter而改變(Internal Covariate Shift),容易導致Model收斂緩不容易train,而Batch Normalization就是透過在每一層的input都做一次normalization,來解決Internal Covariates Shift,減緩Vanishing Gradient的問題,同時也達到regularization的效果。


XavierAbout 13 minNotePaper ReadDeep Neural Networks